Hyperbolic geometry on noncommutative polyballs
نویسندگان
چکیده
منابع مشابه
Noncommutative Hyperbolic Geometry on the Unit Ball of B(h)
In this paper we introduce a hyperbolic (Poincaré-Bergman type) distance δ on the noncommutative open ball [B(H)]1 := n (X1, . . . ,Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+XnX ∗ n‖ 1/2 < 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H. It is proved that δ is invariant under the action of the free holomorphic automorphism group of [B(H)]1, i.e., δ(Ψ(X),Ψ(Y )) = δ(X, ...
متن کاملBounded noncommutative geometry and boundary actions of hyperbolic groups
We use the canonical Lipschitz geometry available on the boundary of a hyperbolic group to construct finitely summable Fredholm modules over the crossed product of the boundary action. The procedure yields a full set of representatives of the K-homology of the crossed product, and all of them are p-summable for p in an appropriate range related to the geometry of the boundary. By restricting th...
متن کاملAspects of noncommutative Lorentzian geometry for globally hyperbolic spacetimes
Connes’ functional formula of the Riemannian distance is generalized to the Lorentzian case using the so-called Lorentzian distance, the d’Alembert operator and the causal functions of a globally hyperbolic spacetime. As a step of the presented machinery, a proof of the almosteverywhere smoothness of the Lorentzian distance considered as a function of one of the two arguments is given. Afterwar...
متن کاملLectures on Noncommutative Geometry
These Lectures are based on a course on noncommutative geometry given by the author in 2003. The lectures contain some standard material, such as Poisson and Gerstenhaber algebras, deformations, Hochschild cohomology, Serre functors, etc. We also discuss many less known as well as some new results such as noncommutative Chern-Weil theory, noncommutative symplectic geometry, noncommutative diffe...
متن کاملNotes on Noncommutative Geometry
Foreword This book is not just a survey of noncommutative geometry — later NCG; rather, it strives to answer some naive but vital questions: What is the purpose of NCG? What is it good for? Can NCG solve open problems of classical geometry inaccessible otherwise? In other words, why does NCG matter? What is it anyway? Good answer means good examples. A sweetheart of NCG called non-commutative t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2017
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2017.07.012